Bases in which some numbers have exactly two expansions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Expansions of Real Numbers in Two Integer Bases

Let r ≥ 2 and s ≥ 2 be distinct integers. We establish that, if r and s are multiplicatively independent, then the r-ary expansion and the s-ary expansion of an irrational real number, viewed as infinite words on {0, 1, . . . , r− 1} and {0, 1, . . . , s− 1}, respectively, cannot have simultaneously a low block complexity. In particular, they cannot be both Sturmian words. We also discuss the c...

متن کامل

Minimal Weight Expansions in Some Pisot Bases

For numeration systems representing real numbers and integers, which are based on Pisot numbers, we study expansions with signed digits which are minimal with respect to the absolute sum of digits. It is proved that these expansions are recognizable by a finite automaton if the base β is the root of a polynomial whose (integer) coefficients satisfy a certain condition (D). When β is the Golden ...

متن کامل

Beta-expansions of rational numbers in quadratic Pisot bases

We study rational numbers with purely periodic Rényi β-expansions. For bases β satisfying β2 = aβ + b with b dividing a, we give a necessary and sufficient condition for γ(β) = 1, i.e., that all rational numbers p/q ∈ [0, 1) with gcd(q, b) = 1 have a purely periodic β-expansion. A simple algorithm for determining the value of γ(β) for all quadratic Pisot numbers β is described.

متن کامل

On Sets Which Meet Each Line in Exactly Two Points

ABSTRACT Using techniques from geometric measure theory and descriptive set theory we prove a general result concerning sets in the plane which meet each straight line in exactly two points As an application we show that no such two point set can be expressed as the union of countably many recti able sets together with a set with Hausdor measure zero Also as another corollary we show that no an...

متن کامل

Orders for Which There Exist Exactly Two Groups

Introduction. A long-standing problem in group theory is to determine the number of non-isomorphic groups of a given order. The inverse problem–determining the orders for which there are a given number of groups–has received considerably less attention. In this note, we will give a characterization of those positive integers n for which there exist exactly 2 distinct groups of order n (up to is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2019

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2018.06.004